9 research outputs found

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    Get PDF
    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse

    Neuroimaging Biomarkers for Bipolar Disorder Across the Lifespan

    No full text
    corecore